ATC/MG&E Transformer Spill

Jason B. Lowery, Wisconsin DNR
Initial Incident Overview

- July 19, 2019
- Transformer explosion at MGE Substation – Main St. (a few blocks E of capitol)
- Majority of 18,000 gallons of mineral oil in transformer spilled
- Secondary fire a mile away
MFD used 59g of Class A/B Foam (AFFF) mixed w/ 120,000 g of water. Entered storm sewer.
Failed Transformer & Oil Skimming
Absorbents on Main St.
• 120,000 g of water entered storm sewers
• High water in surrounding lakes “contained” PFAS, no rain
• Contractors/consultants: North Shore (ATC), AECOM (ATC) and SCS (MG&E)
Water Cleanup

- Oil “non-PCB” – 14,000g removed from oil/water separation
- 60,000g of water from cable vaults and nearby catch basins
- 80,000g of water from storm sewers
- 40,000g of water from later skimming, utility vault dewatering, & oil/water separation (installing replacement transformer)
- Boom placed/replaced at outfalls & storm sewer (reduced to sheen)
- Samples tested for DRO & PFAS to guide cleanup. Some PCB sampling.
Oil/Water/Foam Removal
Oil/Water/Foam Removal
Frac Tanks on Main St. (water storage)
Oil skimming next to transformer pad
Yahara River Outfall Monitoring/Boom Placement
Lake Monona Outfall Boom Placement
Soil

- Initial 60 to 80 cu yd of soil scraped from substation yard and perimeter
- Additional 300 cu yd of soil later excavated from foundation for new transformer
 - Can’t find disposal location in WI
 - Being transported to US Ecology (PCB Cell) in Belleville, MI
- More soil possible pending additional sampling
Soil Excavation (Main St.)
PFAS-Contaminated Water

- AFFF Foam (FireAde) was initially believed to not contain PFAS, but SDS said:
 - Later obtained Certificate of Analysis for foam
 - Reported 17 PFAS compounds
 - Reporting Detection Limit 20 ppt → cannot report below 20 ppt
 - PFHxA (C6) only detected analyte in Certification of Analysis (may be others below the reporting limit.....)

<table>
<thead>
<tr>
<th>Perfluoroheptane sulfonate</th>
<th>ug/L</th>
<th><0.020</th>
<th><0.020</th>
<th>0.020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perfluoroheptanoic Acid (PFHpA)</td>
<td>ug/L</td>
<td><0.020</td>
<td><0.020</td>
<td>0.020</td>
</tr>
<tr>
<td>Perfluorohexane Sulfonate (PFHxS)</td>
<td>ug/L</td>
<td><0.020</td>
<td><0.020</td>
<td>0.020</td>
</tr>
<tr>
<td>Perfluorohexanoic Acid (PFHxA)</td>
<td>ug/L</td>
<td><0.020</td>
<td>0.088</td>
<td>0.020</td>
</tr>
<tr>
<td>Perfluoro-n-Octanoic Acid (PFOA)</td>
<td>ug/L</td>
<td><0.020</td>
<td><0.020</td>
<td>0.020</td>
</tr>
<tr>
<td>Perfluorononanoic Acid (PFNA)</td>
<td>ug/L</td>
<td><0.020</td>
<td><0.020</td>
<td>0.020</td>
</tr>
</tbody>
</table>
PFAS-Contaminated Water

- PFHxA (C6) was 88 ppt before dilution with storm sewer (based upon analysis). Storm water analysis was diluted.
- What about proprietary chemicals? Other PFAS compounds?
- Takes a week to get results
- Meanwhile, North Shore recovered foam from storm sewers pending results
6:2 FTS standards are 200 ppt (Canada) and 100 ppt (Denmark)
Most concentrations < 20 ppt (LOD in Certificate of Analysis)

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Analyte</th>
<th>CAS Number</th>
<th>Catch Basin 7/19/2019</th>
<th>Surface Water 7/19/2019</th>
<th>Blount 7/19/2019</th>
<th>LW 7/19/2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>4:2 FTS</td>
<td>4:2 Fluorotelomer Sulfonic Acid or 4:2 FTSA</td>
<td>757124-72-4</td>
<td><4.7</td>
<td>-</td>
<td><4.5</td>
<td><4.7</td>
</tr>
<tr>
<td>6:2 FTS</td>
<td>6:2 Fluorotelomer sulfonic acid</td>
<td>27619-97-2</td>
<td>230</td>
<td>790</td>
<td>45</td>
<td>80</td>
</tr>
<tr>
<td>8:2 FTS</td>
<td>8:2 Fluorotelomer sulfonic acid</td>
<td>39108-34-4</td>
<td>19</td>
<td>21</td>
<td>1.9</td>
<td>2.5</td>
</tr>
<tr>
<td>10:2 FTS</td>
<td>10:2 FTS</td>
<td>120226-60-0</td>
<td>1.5</td>
<td>1.1</td>
<td>0.28</td>
<td>0.87</td>
</tr>
<tr>
<td>ADONA</td>
<td>ADONA</td>
<td>958445-44-8</td>
<td><0.17</td>
<td><0.18</td>
<td><0.16</td>
<td><0.17</td>
</tr>
<tr>
<td>APFO</td>
<td>Ammonium Perfluorooctanoate</td>
<td>-</td>
<td>1.9</td>
<td>2.8</td>
<td>3.4</td>
<td>1.7</td>
</tr>
<tr>
<td>DONA</td>
<td>DONA</td>
<td>919005-14-4</td>
<td><0.16</td>
<td><0.17</td>
<td><0.16</td>
<td><0.16</td>
</tr>
<tr>
<td>EtFOSAA</td>
<td>EtFOSAA</td>
<td>4151-50-2</td>
<td><1.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>F-53B Major</td>
<td>F-53B Major</td>
<td>756426-58-1</td>
<td><0.22</td>
<td><0.22</td>
<td><0.21</td>
<td><0.22</td>
</tr>
<tr>
<td>F-53B Minor</td>
<td>F-53B Minor</td>
<td>763051-92-9</td>
<td><0.29</td>
<td><0.30</td>
<td><0.28</td>
<td><0.29</td>
</tr>
<tr>
<td>FOSA</td>
<td>Perfluorooctanesulfonamide</td>
<td>754-91-6</td>
<td><0.32</td>
<td><0.32</td>
<td><0.30</td>
<td><0.32</td>
</tr>
<tr>
<td>GenX</td>
<td>HFPO-DA</td>
<td>13252-13-6</td>
<td><1.4</td>
<td><1.4</td>
<td><1.3</td>
<td><1.4</td>
</tr>
<tr>
<td>NaDONA</td>
<td>NaDONA</td>
<td>-</td>
<td><0.17</td>
<td><0.18</td>
<td><0.16</td>
<td><0.17</td>
</tr>
<tr>
<td>NEtFOSAA</td>
<td>N-ethylperfluorooctanesulfonamidoacetic acid</td>
<td>2991-50-6</td>
<td><1.7</td>
<td><1.8</td>
<td><1.6</td>
<td><1.7</td>
</tr>
<tr>
<td>NMeFOSAA</td>
<td>N-methylperfluorooctanesulfonamidoacetic acid</td>
<td>2355-31-9</td>
<td><2.8</td>
<td><2.9</td>
<td><2.7</td>
<td><2.8</td>
</tr>
<tr>
<td>PFBA</td>
<td>Perfluorobutanoic acid</td>
<td>375-22-4</td>
<td>4.3</td>
<td>14</td>
<td>9.5</td>
<td>1.8</td>
</tr>
<tr>
<td>PFBS</td>
<td>Perfluorobutanesulfonic acid</td>
<td>375-73-5</td>
<td>0.33</td>
<td>0.71</td>
<td>1.8</td>
<td>0.21</td>
</tr>
<tr>
<td>PFDA</td>
<td>Perfluorodecanoic acid</td>
<td>335-76-2</td>
<td>0.35</td>
<td>0.68</td>
<td>0.73</td>
<td><0.28</td>
</tr>
<tr>
<td>PFDA</td>
<td>Perfluorodecanoic acid</td>
<td>307-55-1</td>
<td><0.50</td>
<td><0.51</td>
<td><0.48</td>
<td><0.50</td>
</tr>
<tr>
<td>PFDos</td>
<td>Perfluorodecanesulfonic acid</td>
<td>79780-39-5</td>
<td><0.41</td>
<td><0.42</td>
<td><0.39</td>
<td><0.41</td>
</tr>
</tbody>
</table>
Texas dw standard for PFHxA is 93 ppt
WI proposed ES is 20 ppt for PFOA/PFOS
PFHxA ($\text{C}_6\text{H}_{11}\text{O}_2$) – 5 F-saturated Cs.

PFOS to 6:2 FTS: 8, 7, and 6 F-saturated Cs.
PFAS-Contaminated Water

- 170,000 gallons of water (collected from storm sewers & utility vault) has been containerized.
- Stored in Frac tanks at MGE Coal Yard
- Being treated with GAC (zeolite+3 x 1,000 lb.).
- Then re-analyzed
- If ND, dispose at MMSD or Storm Sewer (WPDS Permit)
Work Plan for Future PFAS Sampling

- Soil Sampling (grid across substation)
- Storm Water (catch basins & outlets)
 - look for trends
- Groundwater (2 sumps & 1 temp well)
 - 3 quarterly rounds
- All samples analyzed for 36 PFAS compounds
PFAS Disposal in Wisconsin

- Disposal difficult in WI, especially solids (WWTPs don’t want leachate)
- Water treated
- “Effective Disposal Work Group” looking at various options
 - Solidification of liquids
 - Incineration
 - Other technologies (plasma, diamond-boron, etc.)
PFAS in AFFF in WI

- Working on a survey for airports and fire departments ➔ where is foam used and stored in the state (late 2019/early 2020)
- Looking into options for AFFF disposal statewide
- Develop BMP’s associated with foam usage to prevent or significantly reduce these types of events (e.g. find fluorine-free foam alternatives)