ISB Research Updates – RRT5

- Lab Scale ISB Study for Enbridge Energy, LP. by SL Ross Environmental Research Ltd. Ottawa, ON
- Large Scale ISB of Persistent Crude and Heavy Oil in Freshwater w/ and w/out Marshland Vegetation – Joint Maritime Training Facility, Mobile, AL

SL Ross Lab ISB Study - Objectives

- Determine the ignitability and burn effectiveness for representative light oils moved on Line 5
- Increase the understanding of the window of opportunity for in-situ burning based on oil weathering and ISB lab tests
- Characterize the physical and chemical composition of the burn residue

SL Ross Lab ISB Study – What was tested?

- A range of three light oils moved on Line 5
 - U.S. Sweet Clearbrook (UHC)
 - Light Sour Blend (LSB)
 - Synthetic Sweet Blend (SYN)
- Tests were completed for fresh and weathered oil
 - Ignition 2 methods @ 3 weathering states
 - burn effectiveness if ignited how much burned
 - residue what's left

SL Ross Lab Study – Weathering & Technique

Weathered State	Time in Wind Tunnel
Fresh	o days, as received
WS-1	2 days
WS-2	2 weeks
WS-3	6 weeks

PROPERTY	FRESH LSB	LSB WS-1	LSB WS-2	LSB WS-3
Density g/mL @o°C	0.85006	0.92440	0.93642	0.94334
Density g/mL @15°C	0.83826	0.91203	0.92415	0.93111
Density g/mL @20°C	0.83452	0.90858	0.92036	0.92726
Density g/mL @30°C	0.82696	0.90129	0.91311	0.91991
Viscosity cP @0°C, SR 1005 ⁻¹	10	350	1544	3105
Viscosity cP @15°C, SR 1005 ⁻¹	8	95	282	526
Viscosity cP @20°C, SR 1005 ⁻¹	6	61	175	312
Viscosity cP @30°C, SR 1005 ⁻¹	6	34	84	139

SL Ross Lab ISB Study – Burn Equipment

- SL Ross wind/wave tank
 - Marine-grade aluminum, measuring 11 meters long by 1.2 meters wide by 1.2 meters deep
- Floating 40-cm diameter circular ring to contain the oil
- Trolling motor was used to create a current underneath the oil containment ring, to simulate the oil being towed in a fire boom
- Fresh water at ambient temperature of approximately 20°C
 - 20°C was determined to be the appropriate strategy as it simulates the most rapid weathering conditions
- Additional ignition testing was performed in a slightly smaller 30-cm burn ring at a starting temperature of approximately 2°C

SL Ross Lab ISB Study – Burn Equipment

SL Ross Lab ISB Study – Burn Protocol

- The burns were conducted targeting 4 litres of fresh or evaporated oil resulting in an initial slick thickness of 32 mm
- Theoretically burn down to between 1 and 1.5 mm
- Result in a maximum target burn efficiency of approximately 97%
- The burn time and burn efficiency were recorded as well as any observations
- The burns were video recorded
- Full procedure Page 7-8 of Final Report
- Full burn observations, parameters and timings Page 8-19 of Final Report

SL Ross Lab ISB Study – Burn Test Results

- All samples were ignitable with a hand torch and sustained high efficiency burns
- Time to ignition increased with oil weathering state

SL Ross Lab ISB Study – Burn Residue Physical Properties

SL Ross Lab ISB Study – Burn Residue Physical Properties

SL Ross Lab ISB Study – Burn Residue Chemical Properties

- Appendix B Chemical analysis of oils and residues
- PAHs and Alkyl PAHs
- Metals

SL Ross Lab ISB Study – PAHs and Alkyl PAHs

SL Ross Lab ISB Study – Dissolved Metals

- The results show that the concentration of the metals in post burn samples are greater than in the pre-burn sample.
- In some instances, the metals are only reported in the post burn samples, and none reported in the pre-burn sample. This is due to the concentration of the metals in the pre-burn sample being below the analytical detection limit.
- Common metals: Iron, Nickel, Sodium, Vanadium, Silicon, Calcium, Zinc, Sulphur, Magnesium, Potassium

SL Ross Lab ISB Study – Cool Temp Results

- To determine if water temperatures would adversely impact or prevent ignition. To produce the gelled fuel, 50 mL of gasoline was mixed with 0.4 grams of "Surefire" gelling agent.
- Add 700 mL of oil to be tested (record mass). This results in a starting layer of 10mm

	LSB WS-1	LSB WS-2	LSB WS-3	SYN WS-1	SYN WS-2	SYN WS-3	UHC WS-1	UHC WS-2	UHC WS-3
Ignition duration (sec)	0	0	0	0	0	0	0	0	0
Full Ignition (sec)	13	30	35	0	5	0	0	0	11
Pass/Fail	Pass								

SL Ross Lab Scale ISB Study – Conclusions

- All the fresh and evaporated crude oil samples could be ignited and burned efficiently.
 - Oil weathering is not expected to be limiting factor in the ISB decision.
 - ISB decisions should be made quickly to maximize collection efficiencies.
- Increased oil weathering states decreased the ignitability of the oils, but did not significantly change the burn efficiencies.
 - Because all oils could be ignited with prolonged application of a propane torch flame, and weathered samples were also successfully ignited using a small quantity of gelled gasoline, commercially available igniters based upon gelled fuel such as gasoline or diesel should initiate a burn with any of these oils.
- This study aligns with the Regional Response Team 5 In-Situ Burning Annex
 - Under certain specific conditions, ISB may offer a logistically simple, rapid, inexpensive, and relatively safe means for reducing impacts of an oil spill.

Previous Research Discussion

- ISB requires real-time approval, pre-work is to enable an efficient decision process
- Cooler water may increase the window of opportunity (slower oil weathering) & broken ice may act as a natural containment for ISB
- ISB may offer a logistically simple, rapid, inexpensive, and relatively safe means for reducing impacts of an oil spill

Large Scale ISB JMTF - Objectives

- How do ISB residues interact with freshwater, having lower density than seawater?
- How does vegetation, such as that commonly found in marshlands, affect ISB?
- What is the ISB consumption rate and burn efficiency of heavier crude and bunker oils, and is this affected by wave action?
- What are the quantity, fate, physical and chemical properties of burn residual?
- What are the particulates and emissions concentrations in the smoke plume, and how do they move and/or dissipate in time and space?

Large Scale ISB JMTF – What was tested?

- Persistent light to medium crude oil (37-41 API gravity)
- Heavy/"bunker oil" (RMG 380) (12.2 API gravity)
- Target burn length for each burn is about 20-30 minutes
- Expects each burn to consist of 155-170 gallons of oil

Burn	Oil	Waves	Vegetation
1	Crude	-	-
2	Crude	Yes	-
3	Crude	-	Yes
4	RMG 380		-
5	RMG 380	Yes	-
6	RMG 380	-	Yes

Large Scale ISB JMTF – Procedures & Setup

- Heat flux measurements and thermocouples will target temperature measurement in the water, oil, fire and smoke plume so analysts may use burn temperature to assess burn efficiency.
- Prior to each burn, analysts will collect raw oil and water samples for analysis of baseline physical and chemical properties and pre-weigh any materials for burn residue collection.
- Once surface oil reaches the relative target oil thickness of 10 millimeters, flow will cease for five minutes prior to ignition.
- Propane torch for ignition.

Large Scale ISB JMTF - Analysis

- Remote SR-UAS air sampling
- U.S. Environmental Protection Agency's Office of Research and Development (ORD) – Dr. Brian Gullett & Dr. Johanna Aurell
- Emissions sampled consisted of CO2, CO, PM2.5, VOCs, black carbon, brown carbon, elemental/ organic/ total carbon, and PAHs.
- Results are pending sample analyses.

Large Scale ISB JMTF - Analysis

Large Scale ISB JMTF - Analysis

- Residue Analysis
- Research analysts will calculate the burn efficiency as the ratio of the mass of oil burned to the initial oil mass introduced to the burn area.
- RDC chemist and/or designated sampler will collect water and oil residue samples for each burn
- The US EPA toxicology lab will analyze samples for total petroleum hydrocarbons (TPH), alkanes and polycyclic aromatic hydrocarbons (PAHs).

